

# UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES

Carrera: Maestría en Manejo de Vida Silvestre

Programa de:

# **DINÁMICA DE POBLACIONES**

Carga horaria: 40 horas

Horas Semanales: 40 horas

## Contenidos mínimos

Métodos de muestreo. Densidad poblacional. Disposición espacial. Demografía. Parámetros poblacionales. Crecimiento y regulación poblacional. Importancia demográfica de las interacciones ecológicas intra e interespecíficas. Computación y modelos de simulación como herramientas para estudios de dinámica poblacional. Implicancias de la dinámica poblacional en el manejo y conservación de especies.

## **OBJETIVOS**

- Interpretar los modelos poblacionales como base para la toma de decisiones de manejo de poblaciones.
- Entender a las poblaciones como un nivel de organización.
- Adquirir una visión global de los procesos demográficos de las especies y de los factores físicos y bióticos que les afectan.
- Reconocer la importancia de los estudios poblacionales, como base para la generación de planes de manejo, aprovechamiento y conservación de especies.

#### PROGRAMA ANALÍTICO

- 1. Descripción de las Poblaciones: El concepto de población. Abundancia y distribución espacial. Procesos poblacionales que afectan el tamaño poblacional: reproducción, supervivencia, inmigración y emigración. Parámetros poblacionales básicos. Tablas de vida diagramáticas y convencionales. Supervivencia. Fertilidad. Tasa de reproducción y tasa de incremento. Valor reproductivo y tiempo generacional.
- 2. Descripción de los procesos poblacionales. Modelo de crecimiento exponencial básico. Competencia intraespecífica. Densodependencia. Propiedades de los factores densodependientes. Modelo de crecimiento logístico básico. Fluctuaciones. Uso de programas de computación: R software. Paquete Primer.
- 3. Descripción de modelos poblacionales: Modelos de crecimiento basados en supervivencia y fecundidad específicas por edad: matrices de proyección modelos de crecimiento por estadíos. Estudios de perturbación de poblaciones, análisis de elasticidad y sensibilidad. Estimación de supervivencia mediante captura y recaptura múltiple. Programa Mark. Metapoblaciones. Conceptos sobre dinámica metapoblacional. Uso de programas de computación: R software.
- 4. Metodologías de Estimación de la abundancia poblacional. Conceptos básicos de captura marcado y recaptura. Teoría de muestreo de distancias Distance Sampling. Funciones de detección, Transecta en línea y transecta de puntos. Teoría de ocupación (Occupancy). Modelos de una estación y multitemporales. Modelos con covariables que afectan a la detección y a la ocupación. Uso de programas de computación: R software.

# METODOLOGÍA DE ENSEÑANZA

El curso de dictará mediante clases expositivas diarias, se introducen los conceptos teóricos básicos y su fundamentación para posteriormente desarrollar herramientas de análisis y evaluación práctica. Contendrá una intensa práctica de casos (resultantes de datos tomados por estudiantes en una breve salida de campo para tal fin o como resultado de datos registrados en cursos anteriores) y resolución de ejercicios utilizando softwares estadísticos específicos para análisis de dinámica de poblaciones animales.

# **MODALIDAD DE EVALUACIÓN**

El proceso de aprendizaje de los contenidos brindados se evaluará a través de la participación en clase y por el resultado de evaluaciones de casos brindados para su análisis día a día. La evaluación del curso se realizará de manera individual, en donde el estudiante deberá resolver una consigna/problema que se planteará una vez finalizado el curso. Se realizará una ponderación final de la nota obtenida de la evaluación final con las notas obtenidas en las evaluaciones diarias.

## **BIBLIOGRAFÍA**

Begon, M. & M. Mortimer (eds.). 1990. Population Ecology. A Unified Study of Animals and Plants. Blackwell Scientific Publications. Oxford, U.K.

- Boersch-Supana PH:, Traska AE, & SR Bailliea. 2019. Robustness of simple avian population trend models for semi-structured citizen science data is species-dependent. Biological Conservation 240: 108286.
- Krebs, CJ. 1989. Ecological methodology. Harper Collins Publishers. New York. 654 p.
- Krebs CJ. 2015. Ecological Methodology. 3ra Ed. Capítulo 2: Estimating abundance in animal and plant populations. Addison Wesley Longman.
- McCune, B. & J B. Grace. 2002. Analysis of ecological communities. MjM Software Design. Oregon, SA. 300 p.
- Mueller-Dumbois, D. & H. Ellenberg. 1974. Aims and methods of vegetation ecology. John Wiley & Sons. New York.
- Murray, DR. 1986. Seed dispersal. Academic Press. Orlando, Florida.
- Pollock KH; Nichols JD; Brownie C & JE Hines. 1990. Statistical inference for Capture- Recapture Ex 107.periments. Wildlife Monographs. 97 pp.
- Ricklefs, RE. & GL. Miller. 2000. Ecology. Fourth edition. W. H. Freeman and Company. USA. 822 p.
- Smith, RL. & TM. Smith. 2000. Ecología. Cuarta Edición. Addison Wesley Longman. Inc. España.