

UNIVERSIDAD NACIONAL DE CÓRDOBA

Facultad de Ciencias Exactas, Físicas y Naturales
República Argentina

PROGRAMA DE ASIGNATURA

ASIGNATURA: QUIMICA DE LA ATMÓSFERA **AÑO**: 2027

CARÁCTER: Obligatoria

CARRERA/s: Licenciatura en Hidrometeorología

RÉGIMEN: Cuatrimestral **CARGA HORARIA:** 80 hs.

UBICACIÓN en la CARRERA: Cuarto año - Segundo cuatrimestre

FUNDAMENTACIÓN Y OBJETIVOS

La química atmosférica implica el estudio de la composición química de la atmósfera natural, la forma en que los gases, líquidos, y sólidos en la atmósfera interaccionan entre ellos y con la superficie de la tierra y cómo las actividades humanas pueden estar cambiando la características físicas y químicas de la atmósfera.

Los objetivos de la materia son conocer las reacciones químicas más importantes que tienen lugar en la tropósfera, incluyendo la formación, crecimiento y propiedades de aerosoles, asi como el transporte y difusión de especies químicas y la interacción del clima con estas reacciones químicas.

CONTENIDO

UNIDAD 1. La Atmósfera

Historia y evolución de la atmósfera de la tierra. Las capas de la atmósfera. Características y composición química. Unidades y escalas espaciales y temporales en los procesos atmosféricos. Efecto invernadero.

UNIDAD 2. Componentes traza de la atmósfera

Concepto de vida media. Familia de compuestos con S. Familia de compuestos con N. Familia de compuestos con C. Familia de compuestos halogenados.

UNIDAD 3. Química de la estratosfera

Mecanismo Chapman. Ciclos de los NOx, HOx y halogenos en la estratosfera. El agujero de O3. Química estratosférica heterogénea. Transporte y mezcla en la estratosfera.

UNIDAD 4. Química de la tropósfera en fase gaseosa.

Química atmosférica del CO, NOx y formaldehido. Reacciones básicas de la troposfera: fotolisis del O3, oxidación de CH4 y H2O2. Ciclo de los OHx y producción de O3. Balance global de NOx. Compuestos orgánicos volátiles no metánicos en relación con O3 y NOx. Química de los hidrocarburos biogénicos. Química de los compuestos reducidos del N. Smog fotoquímico.

UNIDAD 5. Aerosoles atmosféricos.

. Mecanismos de formación y clasificación. Propiedades y tamaño. Dinámica de aerosoles: nucleación, condensación y coagulación. Técnicas de medición. Efectos sobre el clima. Aerosoles orgánicos: C elementa, C-orgánico, C-secundario y PAHs.

UNIDAD 6. Deposición atmosférica.

Deposición seca. Deposición húmeda. Deposición ácida.

UNIDAD 7. Legislación en calidad del aire.

Evolución histórica y estado actual. Sistemas de vigilancia y gestión de la calidad del aire.

METODOLOGÍA DE TRABAJO

5 horas semanales de clases teórico-prácticas.

BIBLIOGRAFÍA RECOMENDADA

- Seinfeld, J.H., and S. Pandis, Atmospheric Chemistry and Physics, Wiley, 1998
- Barbara J. Finlayson-Pitts, James N. Pitts, Jr, Chemistry of the upper and lower atmosphere: theory, experiments and applications, San Diego, Calif.: Academic Press, 2000.

EVALUACIÓN

RÉGIMEN DE REGULARIDAD

Aprobar las dos evaluaciones parciales con nota mayor o igual a cuatro (4), teniendo una instancia recuperatoria para cualquiera de las dos evaluaciones parciales. El examen final es escrito sobre contenidos teórico-prácticos. En algunos casos esto será complementado por un examen oral.