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• We determined the drivers of fires in Semiarid Chaco mountains of Central Argentina.
• We identified the drivers' ranges at which fire activity was higher.
• Climate was the most important driver, followed by human and biological predictors.
• Fires were more frequent at intermediate levels of rainfall and productivity.
• Fires were more frequent where temperature and productivity were more variable.
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Fires are a recurrent disturbance in Semiarid Chaco mountains of central Argentina. The interaction of multiple
factors generates variable patterns of fire occurrence in space and time. Understanding the dominant fire drivers
at different spatial scales is a fundamental goal to minimize the negative impacts of fires. Our aimwas to identify
the biophysical and human drivers of fires in the Semiarid Chaco mountains of Central Argentina and their indi-
vidual effects on fire activity, in order to determine the thresholds and/or ranges of the drivers at which fire oc-
currence is favored or disfavored. We used fire frequency as the response variable and a set of 28 potential
predictor variables, which included climatic, human, topographic, biological and hydrological factors. Data
were analyzed using Boosted Regression Trees, using data from near 10,500 sampling points. Our model identi-
fied the fire drivers accurately (75.6% of deviance explained). Although humans are responsible for most igni-
tions, climatic variables, such as annual precipitation, annual potential evapotranspiration and temperature
seasonality were the most important determiners of fire frequency, followed by human (population density
and distance to waste disposals) and biological (NDVI) predictors. In general, fire activity was higher at interme-
diate levels of precipitation and primary productivity and in the proximity of urban solid waste disposals. Fires
were alsomore prone to occur in areas with greater variability in temperature and productivity. Boosted Regres-
sion Trees proved to be a useful and accurate tool to determine fire controls and the ranges at which drivers favor
fire activity. Our approach provides a valuable insight into the ecology of fires in our study area and in other land-
scapes with similar characteristics, and the results will be helpful to develop management policies and predict
changes in fire activity in response to different climate changes and development scenarios.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Fire is a natural disturbance agent in many ecosystems around the
world. Many species depend on fires that create or maintain suitable
habitats for them and, in some cases, fires also favor reproduction
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(Bond et al., 2005). However, human interventions on fire regimes, trig-
gered by both increased ignitions and fire suppression (including
firefighting and reduction of fuel loads and connectivity), have altered
the frequency, intensity, severity and distribution of fires (Archibald
et al., 2012; Hantson et al., 2015; Keeley et al., 1999; Syphard et al.,
2007). These changes have increased the vulnerability of ecosystems
to fires (Chuvieco et al., 2014) by reducing the diversity and extent of
forests (FAO, 2010; Hansen et al., 2013), affecting biogeochemical and
hydrological cycles, releasing greenhouse gasses, accelerating erosive
processes (Bowman et al., 2009; Whelan, 1995) and implying higher
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risk to humans and their infrastructure, especially in areas of wildland–
urban interface, because of the proximity of houses to fuels (Radeloff
et al., 2005).

Patterns of fire occurrence are variable in space and time (Parisien
et al., 2011), as a consequence of the interaction of the multiple factors
that are heterogeneous at both dimensions. The ignition and spread of a
fire depend on the type, load, arrangement and moisture content of
fuels, wind speed, slope gradient and aspect of the hillside (Whelan,
1995). Climate and weather will determine the availability and mois-
ture content of fuels; however, the type of land use can also modify
fuel loads and connectivity. Additionally, in mountain landscapes, fire
activity can be strongly controlled by topography that influences
winds, water balance and heat transfer (Agee, 1993; Rollins et al.,
2002; Sharples, 2009). Fuel moisture content is a key factor for the
ignition of fires and along with the amount and connectivity of fuels
will determine the extent of the burned area and fire intensity (Rollins
et al., 2002).

A fundamental approach to determine the occurrence of fires in-
volves understanding how fire drivers interact in space and how their
dominance changes under different conditions. This information is es-
sential to help decision making about fire management and to predict
fire risk, which becomes a challenging task in a context of global change
induced by population dynamics, biological invasions, land use and
climate changes (Dukes and Mooney, 1999; Flannigan et al., 2000;
Grimm et al., 2008).

The study of the environmental factors controlling fire activity has
considered different approaches. For instance, fire determinants may
be identified using generalized linear regression models (e.g. Cardille
et al., 2001; Hawbaker et al., 2013), but only the direction of their
(linear) effect on fire activity (i.e. positive or negative) can be deter-
mined using this approach. Additionally, in an analysis of potential
nonlinear effects of predictor variables on fire activity, Syphard
et al. (2007) identified thresholds at which fires were more prone
to occur. Being aware of those nonlinear relationships, Aldersley
et al. (2011), Archibald et al. (2009) and Wu et al. (2014) analyzed
fire drivers using decision trees, a non-parametric supervised learn-
ing method used for classification and regression. As a result, they
identified the combination of variables and thresholds determining
the amount of burned area.

Advantages of regression trees include the ability to handle different
types of predictor variables, are unaffected by differing scales of mea-
surement among predictors and automatically model interactions
between predictors (Elith et al., 2008). However, regression trees can
be sensitive to small changes in training data and sometimes are less ac-
curate than other methods and fail to detect important interactions
when predictor variables are correlated (De'ath, 2007; Olden et al.,
2008). To overcome some of these limitations, regression trees can be
combined with boosting, a method to improve model accuracy that
combines and averages several less precise rules to achieve more accu-
rate predictions (De'ath, 2007; Olden et al., 2008). Besides accuracy im-
provements, Boosted Regression Trees (BRTs) analyze the functional
effects of each predictor variable in the final BRT (Friedman, 2001),
allowing the identification of the ranges and/or thresholds along the
entire range of values assumed by predictors at which the effect on
the response variable is favored or neglected, reaches its maximum,
etc. This possibility makes BRTs a valuable tool to further understand
the relationships between predictor and dependent variables.

To the best of our knowledge, BRTs have been barely used to study
fire drivers. For instance, Parisien and Moritz (2009) reported some
thresholds for predictor variables at which fires were more prone to
occur, but failed to state the functional effect of predictor variables
beyond those thresholds. Moreover, the dependent variable used
by those authors assumed only burned/unburned values, which
might neglect combinations of variables and thresholds associated
with higher fire frequencies and fire risk. Similarly, Parisien et al.
(2011) studied the environmental controls of fires at different
spatial scales, employing circular areas from 100 to 100,000 km2 as
sample units and reporting partial dependent plots where to analyze
thresholds and ranges.

Studies addressing environmental drivers of fires worldwide
have been conducted in fire prone ecosystems of North America
(e.g. Hawbaker et al., 2013; Parisien et al., 2011; Rollins et al., 2002;
Syphard et al., 2009), Europe (e.g. Pausas and Fernández-Muñoz,
2012; Viedma et al., 2009), South Africa (e.g. Archibald et al., 2009),
Russia (e.g. Dubinin et al., 2011) and Australia (e.g. Bradstock, 2010).
In South America, fire drivers were studied mainly in Amazonia
(Armenteras and Retana, 2012), Cerrado (Hoffmann et al., 2012),
Mediterranean vegetation of Chile (Carmona et al., 2012) and other
tropical rainforests and savannas (Armenteras-Pascual et al., 2011).
However, very few studies have focused on the drivers of fire in the
Gran Chaco (e.g. Bravo et al., 2010; Fischer et al., 2012), the most
geographically extensive seasonally dry forest in South America
(Moglia and Giménez, 1998), where fires are a recurrent disturbance
(Kunst and Bravo, 2003).

Here, wemodeled the relationship between fire frequency and a se-
ries of potential explanatory variables using BRTs with the aim of iden-
tifying key environmental drivers of fires in Semiarid Chaco mountains
of central Argentina. Particularly, we focused on the mountain range
known as Sierras Chicas, because it is the area most affected by fires,
with nearly 254,000 ha burned between 1999 and 2011 (i.e. 31% of
the study area) and higher fire frequencies and number of large fires
than the surrounding mountain ranges (Argañaraz et al., 2015). Ad-
ditionally, population size in Sierras Chicas has grown rapidly in the
last decades, driven by people moving from big cities to nearby wild-
land areas (Gavier and Bucher, 2004), as occurred in many other
areas worldwide. Such development is of low density, with houses
inserted in a matrix of wildland vegetation with high risk of fire
(Hawbaker et al., 2013; Radeloff et al., 2005; Syphard et al., 2007).
In addition, Sierras Chicas is the second most important touristic
area of Argentina, and tourism sometimes produces wildfires as a re-
sult of improper management of outdoor activities in wild areas. As a
consequence of human intervention in fire regimes, fires produce
several negative impacts in the region, including reduction and deg-
radation of native vegetation (Giorgis et al., 2013; Renison et al.,
2002; Zak et al., 2004) and avifauna (Albanesi et al., 2014), pollution
of water reservoirs providing water to more than 1.3 million people
(Bonansea and Fernandez, 2013), household destruction and livestock
death.

Previous regional studies have addressed the effects of fires on soil,
water and biota, showing their importance in our study area. However,
developingfiremanagement strategies aiming tominimize thenegative
impacts of fires requires information about fire regimes and fire drivers.
To our knowledge, in our study area, the work of Miglietta (1994) is
the only one describing the seasonality of fires and its relationship
with climatic conditions; however, that work did not use spatially
explicit data. More recently, Argañaraz et al. (2015) studied the re-
cent fire history of the mountains of central Argentina, analyzing
the spatial and temporal patterns of fire activity. Hence, in order to
generate essential information to improve our understanding of the
fire ecology in Semiarid Chaco mountains we analyzed the relation-
ship between the number and area of fires and a set of environmental
fire drivers. Our main objectives were i) to determine the biophysical
and human drivers of fires in the Sierras Chicas of Córdoba, Central
Argentina, ii) to understand the individual effect of these drivers
across their range of values, in order to identify the thresholds and/
or ranges at which fire occurrence is favored or disfavored, and iii)
to analyze the effects of interactions among fire drivers. The generat-
ed information will contribute to the development of adequate man-
agement policies aiming to reduce the negative impacts of fires. In
addition, the BRT approach will provide novel information on fire
ecology that may be extrapolated to other arid and semiarid land-
scapes worldwide.



Fig. 1. Location and fire frequency (1999–2011) in Sierras Chicas, Córdoba Province, Argentina.

1 Mario Navarro, Observatorio Meteorológico Salsipuedes, Salsipuedes, Córdoba. Pre-
cipitation data from the period 1988–2012 and temperature data from the period 2002–
2011.
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2. Methods

2.1. Study area

The Sierras Chicas of Córdoba stretch in a north–south direc-
tion, with an altitudinal range between 500 and 1947 ma.s.l
(Fig. 1). Our study area occupies nearly 8100 km2 and excludes
the southern tail of this mountain range. Sierras Chicas encom-
passes the southern portion of Semiarid Chaco forests. Vegetation
consists of a mosaic of lowland forests (b750 ma.s.l., dominated
by Aspidosperma quebracho-blanco, Prosopis spp. and Acacia spp.
forests), Serrano forests (between 700 and 1200 ma.s.l. dominated
by Lithraea molleoides and Zanthoxylum coco forests), shrublands
(between 1000 and 1100ma.s.l., dominated byHeterothalamus alienus),
and grasslands (usually N1000 ma.s.l., dominated by Festuca hieronymi,
Stipa spp., and Poa spp.) (Gavier and Bucher, 2004; Zak and Cabido,
2002).

Natural vegetation communities have been substantially altered
by land use history. In lowland areas, most forests have been re-
placed by crops, whereas mountain vegetation is under pressure
from grazing, selective logging, exotic invasive plants and fire. In
particular, forests are of most concern because they are being lost
at high rates (2.8% of remaining forest cover per year), increasing
forest fragmentation (Gavier and Bucher, 2004) and resulting in a
lowerwater catchment capacity of basins (Cingolani et al., 2008). Re-
gionally, fires are used by ranchers to reduce senescent biomass and
promote forage re-growth during the dry season (Fischer et al., 2012;
Kunst and Bravo, 2003).
Climate is temperate semiarid, with amonsoonal rain regime, average
annual rainfall of 960mmandmean annual temperature of 16.8 °C.1Most
precipitations occur between October and March (spring and summer).
Winter is dry andmild,with relatively high temperatures occurring inAu-
gust and September, inducing seasonal fires in winter (Miglietta, 1994;
Argañaraz et al., 2015). Large fires (N1000 ha) account for 74% of burned
area, although they only represent 3.5% of fire events and fires larger than
15,000 ha burned every 1 to 3 years between 1999 and 2011 (Argañaraz
et al., 2015). According to the FireManagement Plan of Córdoba province,
almost 95% of ignitions are caused by humans, with fire season spanning
from June to December.

2.2. Modeling strategy

We analyzed the environmental drivers of fires modeling the rela-
tionship between the frequency of fires as the response variable and a
set of potential predictor variables that included human, climatic,
biological, topographic and hydrological variables. To model that rela-
tionship and to determine themost important drivers and their interac-
tions, we used Boosted Regression Trees.

2.2.1. Response variable
A fire frequency map for the period 1999–2011 was used to obtain

the response variable (Table 1). Burned scars from Sierras Chicas were



Table 1
Summary and description of input variables for BRT models. Variables in bold indicate remaining predictor variables after collinearity analysis.

Variables Acronym and units Original
resolution

Source and attributes

Fire data
Fire Frequency Fire.freq (#) 30 m Derived from Landsat TM/ETM+ data

Human
1) Distance to urban areas Urban.dist (km) 30 m Polygons of urban areas were mapped by visual interpretation of Google Earth images
2) Distance to roads Road.dist (km) Road vector layer from Instituto Geográfico Nacional of Argentina, improved by visual

interpretation of Quickbird images from Google Earth and supporting information
from Dirección Provincial de Vialidad (Roads Administration of Córdoba Province)

3) Distance to waste disposals Waste.dist (km) Waste disposals were mapped by visual interpretations of Google Earth images,
supporting information (e.g. Nirich (2000))

4) Population density Ln.DensPop
(inhabitants/km2)

Radius level Population Census of Córdoba Province 2008. Census radius is the smallest level at
which data is publicly available (mean size ≈ 34 km2)

5) Housing density Ln.DensHous
(houses/km2)

Climatic
6) Annual precipitation PP.annual (mm) 30 arc sec

(≈1 km at
equator)

WorldClim. BIO12
7) PP of the driest quarter PP.dry (mm) WorldClim. BIO17
8) PP of the wettest quarter PP.wet (mm) WorldClim. BIO16
9) PP of the fire season PP.fs (mm) Derived from monthly data from WorldClim
10) PP seasonality PP.seas (%) WorldClim. BIO15. Coefficient of variation
11) Mean annual Temperature T.mean (10 × °C) WorldClim. BIO1
12) Temp. seasonality T.seas (100 × °C) WorldClim. BIO4. Standard deviation x 100
13) Temp. of the driest quarter T.dry (10 × °C) WorldClim. BIO9
14) Mean temp. of the fire season T.mean.fs (10 × °C) Derived from monthly data from WorldClim
15) Max. mean temp. of the fire
season

T.max.mean.fs (10 × °C) Derived from monthly data from WorldClim

16) Annual potential
evapotranspiration

PET.annual (mm) CGIAR-CSI Global-Aridity and Global-PET Geospatial Database

17) Aridity index AI.annual (unitless) CGIAR-CSI Global-Aridity and Global-PET Geospatial Database. AI =
PP.annual/PET.annual

18) Effective precipitation Eff.PP (mm) Derived using data from WorldClim and CGIAR-CSI. Eff.PP = PP.annual - PET.annual

Biological
19) Land cover class Land.cover 30 m Modified from Zak (2008). Classes: Forests, Grasslands, Shrublands, Cultivated lands,

Other, Unclassified.
20) NDVI mean NDVI.mean (unitless) 250 m Derived from MOD13Q1 product and TIMESAT software (Jönsson and Eklundh, 2004)
21) NDVI standard deviation NDVI.SD (unitless)
22) NDVI coefficient of Variation NDVI.CV (unitless)
23) NDVI max. mean NDVI.max (unitless)

Topographic
24) Altitude Altidude (m.a.s.l) 30 m DEM from GLS2005 (Gutman et al., 2008)
25) Slope Slope (degrees) Derived from DEM. Aspect includes 8 classes: N, NE, E, SE, S, SW, W, NW.
26) Aspect Aspect
27) Solar radiation Solar.rad (WH/m2)

Hydrological
28) Distance to water bodies Water.dist (m) 30 m Water bodies vector layer (updated at April 2013) was provided by Secretaría de

Recursos Hídricos y Coordinación of Córdoba Province (Secretary for Water
Resources)
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mapped from Landsat TM and ETM+ imagery (30-m spatial resolution,
Path/Rows: 229/81 and 229/82, between 1999 and 2011) using ABAMS
(Automatic Burned Area Mapping Software), based on the two phase
algorithm proposed by Bastarrika et al. (2011). During the first phase,
pixels with high chances of being burnt are identified (seeds) and
then they serve as the starting point during the second phase, when a
region growing algorithm is applied to finish delimitation of the burned
patch and its unburned interior islands. The minimum mapping unit of
the fire database is 5 ha, because smaller areas have higher confusion
rates and they account for a small proportion of the total burned area.
Producer's accuracies of the fire database ranged from 88% to 97%
(i.e. 3–12% omission errors) and user's accuracies from 71% to 96%
(i.e. 4–29% commission errors) (Argañaraz et al., 2012; Argañaraz
et al., 2015).

2.2.2. Explanatory variables

2.2.2.1. Human activities. Anthropogenic influences on fire regimes are
associated with human presence and activities. The proxies considered
were Euclidean distances to roads, urban areas and urban solid waste
disposals (Table 1). The latter was included because there are many
open sky waste disposals in Sierras Chicas and fires are sometimes
used to reduce trash volume and pests (Nirich, 2000). Fires frequently
remain lit and spread to neighboring areas during hot and windy days.
We also included population and housing density, which were ln + 1-
transformed. Although transformations are not necessary for BRTs, we
pursued the reduction of the range of these variables to facilitate result
interpretation.

2.2.2.2. Climatic variables. We included seven bioclimatic variables
(climatic averages) obtained from the WorldClim Global Climate Data
(Hijmans et al., 2005) (Table 1).We also usedmonthly data to calculate
the averages of precipitation, maximum temperature and mean tem-
perature for thefire season (June–December). Additionally,we included
the annual potential evapotranspiration and the aridity index datasets
available at (http://www.cgiar-csi.org) (Zomer et al., 2007, 2008) and
calculated effective precipitation (Table 1). The latter were included as
indicators of water availability that will determine biomass production

http://www.cgiar-csi.org
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and moisture status of fuels. Seasonality variables indicate annual
ranges in temperature and precipitation (Table 1) and were included
assuming that highly variable areas in terms of precipitation and tem-
perature might allow fuel accumulation under favorable conditions,
and that fuel will burn later during dry and warm periods.

2.2.2.3. Biological variables. Considering that fire occurrence differs
amongvegetation types in Sierras Chicas (Argañaraz et al., 2015), we in-
cluded a land cover map derived from Landsat imagery (Zak, 2008)
(Table 1). Considering that physiognomy types alone might fail to re-
flect fuel loads (for instance, grazed vs. ungrazed grasslands) and vege-
tation state, we also included the Normalized Difference Vegetation
Index (NDVI) as an indicator of primary productivity and fuel availabil-
ity (Paruelo et al., 2004).

Because this index has intra- and inter-annual variability, we ana-
lyzed the time series of NDVI MODIS product (MOD13Q1) provided
every 16 days at 250 m spatial resolution for the period 2001 to 2011.
NDVI time series were analyzed with TIMESAT (Jönsson and Eklundh,
2004). During this process, a function is fitted for each pixel to describe
NDVI variation over time and the beginning and end of the growing sea-
sons (GS) of the period (10 growing seasons). Then, two seasonal pa-
rameters were extracted for each GS: the small seasonal integral and
the maximum value for the fitted function during the season (peak of
productivity); see Eklundh and Jönsson (2012) for further details. This
integral is a proxy of the net primary production in each GS (Ruimy
et al., 1994). Using these two parameters we derived four predictor var-
iables (Table 1). Dispersion measures of NDVI were included under the
assumption that highly variable sites were more prone to fire, because
of the sequence of more productive periods in which fuels accumulate
and lower productive periods (presumably drier) in which fires find
suitable environmental conditions for burning.

2.2.2.4. Topographic and hydrological variables. Topographic variables
included altitude, slope, aspect and annual solar radiation (Table 1).
We considered radiation as a topographic variable because, at a
given latitude and without considering clouds, solar radiation de-
pends on topography. We also included the Euclidean distance to
water bodies because they can act as physical barriers to fire spread
by creating humid conditions and by the presence of water itself
(Table 1). Slope was calculated using ENVI 4.8 and Solar radiation
using ArcGis 9.1.

2.3. Statistical analyses

2.3.1. Data preparation and sampling scheme
The subset of predictor variableswasfiltered by dropping thosewith

Spearman's correlation |r| N 0.7, prioritizing variables with a clearer
functional meaning for fires (e.g. PET.annual over Altitude) and general
and more frequently available data (e.g. PP.annual over PP.fs). As a
result, 17 out of 28 potential predictor variables were included in our
analysis (Table 1). This filtering was necessary to avoid overfitting of
BRTs and a distorted effect of individual variables (Olden et al., 2008;
Parisien et al., 2011).

Sampling recommendations of classical statistics are hard to fulfill in
remote sensing studies (Chuvieco, 2002). A completely proportional to
area sampling strategy was not possible because the higher fire fre-
quency areas were too small compared to the lower frequency areas.
We had to use a larger proportion of points in the higher fire frequency
areas to be able to model them correctly. We randomly selected 7000
points in unburned areas (fire frequency = 0); 1400, 1060 and 780
for fire frequencies = 1, 2 and 3, respectively. We performed a system-
atic random sampling for fire frequencies 4 and 5, resulting in 253 and
18 points; respectively. The sampled proportion was around 0.1% for
the fire frequencies of 0 and 1, and between 0.4 and 10% for higher
fire frequencies. The total sample size was 10,511 points. In all cases,
the minimum distance between samples was 90 m, and the average
shortest distance between points and standard deviation were 433 m
and 250 m, respectively.

2.3.2. Boosted Regression Trees
Boosted Regression Trees (BRTs) are a nonparametric machine

learning technique that combines two algorithms: regression trees
and boosting. In boosting, a collection of regression trees are fitted iter-
atively, but successive trees are fitted on the residuals of the previously
existing trees, with emphasis on poorly modeled observations. The pro-
cess is stagewise and the final BRT is a polynomial of hundreds to thou-
sands of terms, where each term is a regression tree (Elith et al., 2008).
The relative importance of predictors is quantified by considering the
number of times the variable is selected as a tree node, weighted by
the squared improvements to the model resulting from each split, and
then averaged over the collection of all trees (De'ath, 2007). In general,
themost relevant predictors are identifiedwith a 5% limit of relative im-
portance (Johnstone et al., 2010; Parisien et al., 2011). To quantify the
magnitude of the interaction between a pair of variables, predictions
for all possible combination of values of these predictors are calculated
while setting values for all other variables to their respective means.
Then, the residual variance of the linearmodel that relates these predic-
tions to the two marginal predictors indicates the relative strength of
the interaction (Elith et al., 2008).

There are two key parameters to fit BRTs: the learning rate (lr)
and tree complexity (tc). The former shrinks the contribution of each
subsequent tree in thefinalmodel,whereas the latter controls the inter-
actions allowed in each tree. The number of trees (nt) for optimal pre-
dictions depends on these parameters and lower lr values need to be
compensated by more iterations (i.e. higher nt) (De'ath, 2007; Elith
et al., 2008).

BRTs have several advantages as a result of the combination of both
algorithms. BRTs are able to handle a large number of predictors of
different types (numerical, categorical, binary, etc.); they automati-
cally model interactions among predictors and are sensitive to
nonmonotonic relationships between the independent and dependent
variables (Archibald et al., 2009; De'ath, 2007; Elith et al., 2008; Olden
et al., 2008).

We ran BRTswith R 3.1.0 (R Core Team, 2014) using the “gbm” pack-
age (Ridgeway, 2013) and followed recommendations and R script of
Elith et al. (2008). The optimal number of trees was determined using
10-fold cross-validation using 50% of data each time (bag fraction =
0.5). The first BRT included all uncorrelated predictor variables (see
next section) and we then simplified the dataset by dropping the least
important variables.

2.3.3. Spatial autocorrelation
The presence of Spatial Autocorrelation (SAC) in model residuals

can lead to the selection of unimportant explanatory variables and
poorly estimated parameters (Dormann, 2007), resulting in poor un-
derstanding of the system and predictions (Crase et al., 2012). Spa-
tial autocorrelation was analyzed by calculating the Moran's Index
on our model residuals, considering a spatial lag of 100 m. Moran's
Index typically ranges from −1 (strong negative SAC) to 1 (strong
positive SAC), with 0 indicating no SAC and values between ±0.3 in-
dicating weak SAC (O'Sullivan and Unwin, 2010). Moran's Index was
calculated with R 3.1.0 (R Core Team, 2014) using the “ncf” package
(Bjornstad, 2013).

3. Results

The final BRT model included 14 out of the 17 predictor variables,
after dropping Solar radiation, Aspect and Precipitation seasonality.
The explained deviance of the model was 75.6%, indicating a good per-
formance to adequately determine the environmental drivers of fires
in Sierras Chicas. Moran's Index values were always lower than 0.3
(Fig. 2), indicating a weak SAC.
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Considering the 5% limit of relative importance used by other
authors (Elith et al., 2008; Parisien et al., 2011) that in our model
would be 3.8% of explained variability, all the groups of variables, except
for the hydrological one, were included among the most important pre-
dictors determining fire frequency, with a clear dominance of climate.
Particularly, annual precipitations explained 14.7% of the observed var-
iability, followed by slope (10.7%), potential evapotranspiration (8.6%),
temperature seasonality (6.6%), population density (6%), distance to
waste disposals (5.4%), and maximum NDVI (4.1%) (Fig. 3). Distance
to urban areas and water bodies were near the 3.8% limit (3.6% each).
The least important variables, explaining less than 3%, included precip-
itation of the driest quarter, mean and standard deviation of NDVI,
distance to roads and land cover class (Fig. 4). In total, climatic variables
accounted for 32.2% of observed variability, followed by human (15.0%),
biological (11.6%), topographic (10.7%) and hydrological (3.6%)
predictors.

3.1. Effect of explanatory variables on fire activity

3.1.1. Climate
Fire frequency was higher in areas with annual rainfall ranging be-

tween 650 and 700 mm, and decreased monotonically as precipitation
increased above 700 mm and steeply when precipitation decreased
below 650 mm (Fig. 3). Fire frequencies decreased monotonically as
PET.annual increased above 1350 mm and showed an inverse behavior
with higher precipitations of the driest quarter, meaning that fires were
more prone to occur with increasing PP.dry. Fire frequency also in-
creased with increasing annual range of temperature (i.e. Temperature
seasonality) up to 46 °C (4600 in the partial dependent plot of Fig. 3),
rapidly decreasing above that threshold.

3.1.2. Human variables
The most important human variables explaining fire frequency

were population density and distance to waste disposals. Fire activi-
ty increased slightly with higher population densities up to a value of
the ln-transformed variable of≈2 (≈6.5 inhabitants/km2), and then
showed an irregular pattern. Fire frequency remained relatively sta-
ble within the first 8 km distance from waste disposals and then de-
creased at longer distances (Fig. 3). Conversely, fire activity was
minimal at the edge of urban areas and roads, but increased rapidly
at very short distances. Fire frequency was higher at a distance
between 1 and 5 km from urban areas, decreasing slowly at longer
distances (Fig. 4).
3.1.3. Biological variables
Primary productivity proxies were the most important variables

controllingfire frequency. Fireswere less prone to occurwith increasing
NDVI.max and decreasing inter-annual variability (NDVI.SD). Converse-
ly, the effect of NDVI.mean was convex, with maximum fire frequency
at intermediate productivity values. Furthermore, fires were more fre-
quent in forests, grasslands and shrublands than in any other land
cover classes, but without showing important differences among these
three land covers (Figs. 3 and 4).

3.1.4. Topographic and hydrological variables
In general, fire frequency increased with slope, with increases being

slower between 0% and 6% and faster between 6% and 15% (Fig. 3).
Moreover, fire activity was lower at shortest distances to water bodies,
but it rapidly increased within the first 500 m distance and then it
monotonically increased up to 5 km (Fig. 4).

3.2. Interactions between fire drivers

The three predictor variables most frequently appearing in the
strongest pairwise interactions were PP.annual, T.seas and Water.dist
(Table 2). We observed that near the water bodies, the dominance of
this fire driver increases and weakens the marginal effect exerted by
PP.annual and NDVI.max on fire frequency (Fig. 5a). The control of
T.seas on fire activity becomes considerably important in areas where
precipitations of the driest quarter were higher than 35 mm. Moreover,
even though precipitations between 675 and 700 mmwere associated
with higher fire frequencies, lower precipitations between 650 and
670 mm produced similar or higher fire activity when combined with
annual temperature ranges between 44 and 46 °C (Fig. 5b). Finally,
themarginal effect of distance to urban edges on fire frequency was ex-
acerbated at low population densities. The interactions ranked ≥6
(Table 2) did not show a different pattern than the one expected for
each individual predictor.

4. Discussion

4.1. Effect of predictor variables on fire activity and their importance

Our results indicate that climatic variables were themost important
predictors of fire frequency. In general, previous studies have found that
human variables are more closely associated with fire ignitions, but the
amount of burned area depends greatly on climatic conditions that de-
termine fuel availability and suitable conditions for fires (e.g. Aldersley
et al., 2011; Archibald et al., 2009; Hawbaker et al., 2013; Mundo
et al., 2013; Parisien et al., 2011; Syphard et al., 2007; Wu et al., 2014).

The highest fire frequencies occurring between 650 and 700 mm of
annual precipitation suggest a balance between the amount of fuel pro-
duction and dry conditions allowing fires to ignite and spread at this
range (Pausas and Ribeiro, 2013). The limiting factor with low rainfall
aswell aswith higher potential evapotranspiration should be fuel avail-
ability and with high rainfall, fuel moisture content. The increasing fire
frequencies with increasing precipitation of the driest quarter support
the idea that fuels are a limiting factor in our study area, as in other
semiarid landscapes worldwide (Bradstock, 2010; Rollins et al., 2002;
van der Werf et al., 2008). Our results agree with those of Bravo et al.
(2010), who reported greater fire activity in Chaco savannas in years
with precipitations rangingbetween 600 and 750mmand lowerfire oc-
currence with rainfall lower than 600 mm. Likewise, in Mediterranean
areas of Catalonia, Spain, severe fires occurwith annual rainfall between
550 and 700 mm (Díaz-Delgado et al., 2004). However, fire activity can
reach amaximumat different ranges ofmean annual precipitation, such
as 700–900 mm in northwestern ranges of Argentina (Grau, 2001) and
1000–1600 mm in Africa (van der Werf et al., 2008).

Even though this moisture–fire relationship is nonlinear (Bradstock,
2010), different thresholds of higher fire activity are imposed in



Fig. 3. Partial dependence plots offire frequency on the sevenmost important explanatory variables (N3.8%). The y axis shows themarginal effect of the predictor variable on the logit(p) of
the response variable, with all other variables being held constant. Rug plots on the x-axis represent the distribution of the respective data space in percentiles. Percentages on the x label
represent the percentage of explained variability.
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Fig. 4. Partial dependence plots of fire frequency on explanatory variables with relative importance b3.8%. The y axis shows themarginal effect of the predictor variable on the logit(p) of
the response variable, with all other variables being held constant. Rug plots on the x-axis represent the distribution of the respective data space in percentiles. Percentages on the x label
represent the percentage of explained deviance rescaled to the total deviance explained by the model.
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Table 2
Ranking of the eight strongest interactions between predictor variables for a BRT model
predicting fire frequency in the Semiarid Chaco mountains of central Argentina.

Ranking Predictor 1 Predictor 2 Interaction strength

1 Water.dist PP.annual 341.7
2 Ln.DensPop Urban.dist 207.4
3 Water.dist NDVI_max 205.6
4 T.seas PP.dry 139.1
5 T.seas PP.annual 102.5
6 PET.annual PP.annual 80.0
7 PP.annual Slope 69.1
8 NDVI.mean T.seas 61.8
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different ecosystems, depending on the length of the fire season in wet-
ter ecosystems and on fuel availability in drier ecosystems (van der
Werf et al., 2008), which can also be conditioned by rainfall seasonality
and vegetation characteristics. For instance, in the Chaco ecoregion,
hardwood forests can still stand at precipitation gradients of 300–
500 mm (Arid Chaco) and 450–900 mm (Serrano Chaco) (Naumann,
2006), whereas in other ecosystems, woody cover would be consider-
ably lower (Sankaran et al., 2005), allowing more grasses to grow and
thus increasing the loads of fine fuels that burn more easily.

The increasing fire occurrence with the increasing temperature sea-
sonality was expected under the assumption that occasional conditions
favoring biomass burning occur with increasing temperatures. Howev-
er, in areas with very high temperature seasonality, fire activity was
very low. Most of these areas are agricultural lands which have bare
soils at some point during the year, that might reach higher tempera-
tures (Lagouarde et al., 1995) increasing T.seas. The observed low fire
activity in cultivated lands is expected due to the spatial and temporal
variability of fuel loads.

The increasing fire frequency associated with steeper slopes, is due
to the expected faster rate of spread of fires, associated to improved ef-
ficiency in heat transfer upslope, which pre-dries fuels located above
(Whelan, 1995), stronger fire induced winds behind the fire front
(Pimont et al., 2012) and other complex interactions between wind
and terrain (Sharples, 2009). Other studies found similar tendencies
(Hawbaker et al., 2013; Syphard et al., 2008), with increasing burned
area at sites with slopes N10% or steeper (Díaz-Delgado et al., 2004);
however, in our study area there are few slopes above 15%.

Our results indicate that aspect and solar radiation are not determi-
nants of fire activity in Sierras Chicas. Similar results were reported in
 

 

Fig. 5. Three-dimensional partial dependence plots for interactions between annual pre
areas with gentle slopes (Wu et al., 2014), where solar radiation differs
little among facets (Heyerdahl et al., 2001). However, southern slopes
are less suitable for fires in Sierras Chicas, because fuel moisture is
higher, whereas northern slopes aremore prone tofires (Fabián Freccia,
Personal communication). In fact, the partial dependence plot for this
variable, previous to model simplification, showed that north-eastern
slopes were slightly more prone to fires. This negligible effect of aspect
and solar radiation might be related to the scale of our analysis and
data resolution. While different aspects might burn differently (e.g.
low burn severity on southern slopes), such information was not
available in our fire database. Moreover, nearly 74% of the total
burned area is affected by large fire events (N1000 ha) (Argañaraz
et al., 2015) that usually occur under extreme conditions and probably
burn independently of aspects as of many other variables (Hawbaker
et al., 2013).

Fire activity was slightly higher with small increases in population
density, probably associated to increased ignitions, as is reported in pre-
vious studies (Aldersley et al., 2011; Syphard et al., 2007, 2009). Never-
theless, the slenderness of this relationship indicates that very few
people might provide enough ignition opportunities to burn large
areas (Archibald et al., 2009). The higher fire frequency at short dis-
tances fromwaste disposals supports the idea that they may be sources
of fires in Sierras Chicas. This is the result of the burning of waste dis-
posals to reduce trash volumes and pests (Nirich, 2000), and spotting
during hot and windy days, which commonly occur during late winter
and early spring. The reduced fire activity found over the edge of
urban areas agrees with previous studies indicating lower availability
and continuity of fuels as the level of development increases (Syphard
et al., 2007). However, higherfire frequencies occurred in the surround-
ings of urban areas indicating a balance between more frequent human
ignitions and fuel available for burning. This result might also be related
to the short distances usually separating urban solid waste disposals
from associated urban areas (3.5 km on average).

The low fire activity at very short distances from roads indicates that
roadsmainly act as fire breaks in Sierras Chicas, and this is probably due
to the lower fuel loads on the shoulders, higher visibility allowing early
detections and easier access for suppression activities. In general, in-
creasing human accessibility and activity tend to be positively associat-
ed with both fire occurrence and number of ignitions (Penman et al.,
2013). However, large wildfires seem to burn where human presence
is low (Cardille et al., 2001), because vegetation is typically continuous
(Syphard et al., 2008).
 
 

cipitations and distance to water bodies (left) and temperature seasonality (right).
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Similar to precipitations, fires would be limited by fuel availability at
lower productivities and by fuel moisture at higher productivities
(NDVI.mean and NDVI.max). Our results are consistent with findings
reported for dry ecosystems worldwide (e.g. Pausas and Ribeiro,
2013; van der Werf et al., 2008) and support the intermediate fire-
productivity hypothesis (Pausas and Bradstock, 2007). Higher fire
frequencies in areas where productivity is more variable is in accor-
dance with our assumptions of alternating periods of biomass accu-
mulation during “good years”, which are available to burn during
“bad years”.

Finally, the fact that land cover class was the least important predic-
tor variable is surprising because previous studies indicated that grass-
lands burned more frequently than other land cover classes (Argañaraz
et al., 2015). However, this could be related to other variables included
in the presentwork eroding the explanatory power of land cover classes
as reported by Wu et al. (2014). In general, grasslands are located at
high altitudes where potential evapotranspiration is lower, and we
found high fire frequencies at low values of this variable. Additionally,
the land cover class is not always a good indicator of fuel loads (e.g.
grazed vs. ungrazed grasslands). Herbivory affects NDVI (Blanco et al.,
2008) and these variables were in fact better predictors of fire occur-
rence than land cover classes. Similarly, other studies observed that
vegetation classes had lower predictive power when productivity and
climatic variables were included in the analysis (Hawbaker et al.,
2013). Conversely, in the absence of such kind of predictors, vegetation
classes significantly contributed to explaining fire activity (Syphard
et al., 2007).

Fires are less prone to burn at very short distances to water bodies,
probably due tomore humid conditions near water bodies, creating un-
suitable environment for fires; thus, water bodies become natural fire-
breaks (Cardille et al., 2001). The weakened effect of mean annual
precipitation and maximum NDVI in the area adjacent to water bodies
suggests that available humidity exerts a dominant control and limits
fire occurrence. In addition, some water bodies are in the middle of
ravines, where fires have serious difficulties to advance downslope on
such steep terrains (Whelan, 1995).

4.2. Model accuracy

Our results indicate that Boosted Regression Trees were a useful and
precise tool to determine the drivers with greatest influence on fire oc-
currence patterns in Sierras Chicas. Our final BRT model showed a good
performance, capturing near 76% of the variability of fire frequency.
Parisien et al. (2011) obtained similar deviance values (about 80%)
using sampling areas of 104 km2, and lower values with smaller sample
areas (e.g. near 25% for sampling areas of 100 km2). Parisien andMoritz
(2009) assessed their BRT model using AUC (area under the operating
curve) and obtained values between 0.83 and 0.92, which is considered
as good/very good.

Moran's index values were always between 0 and 0.3, indicating
weak spatial autocorrelation. Under such circumstances, SAC is usually
neglected in model fitting (e.g. Jung et al., 2006; O'Sullivan and Unwin,
2010; Reino et al., 2013). Additionally, spatial dependence of our data is
expected to be even lower, since 50% of data was used at each iteration
of BRT (i.e. bag fraction = 0.5, see Section 2.3.1). It is also possible that
BRTs accounted for some SAC (Crase et al., 2012).

5. Conclusions and management implications

Our results contribute to a better understanding of the ecology of
fires in Semiarid Chaco mountains. Boosted Regression Trees proved
to be a useful and accurate tool to determine both biophysical and
human drivers of fires. This approach allowed us to get a deep insight
into the effects of each driver onfire activity,modeling their interactions
and identifying the thresholds and/or ranges increasingfire activity. Our
findings might be extrapolated to other similar arid and semiarid
landscapes, especially in mountain regions, where topography plays a
key role in fire behavior, and areas where the wildland–urban interface
is expanding and human ignitions find enough fuels to burn.

Fire activity in Sierras Chicas is mainly controlled by climate (deter-
mining fuel availability and fuel moisture content) and humans (proba-
bly involved in the number of fire ignitions).

These results implymajormanagement challenges in termsof future
urban development, climate change and their interactions. Fire man-
agement policies are usually aimed at reducing fire risk, which is a func-
tion of both the probability of occurrence and the amount of damage
that can be caused. As expected, human values are prioritized andman-
agement actions tend to concentrate near urban orWUI areas, therefore
demanding highermanagement resources. Considering the current ten-
dencies of urban development, it is probable thatWUI communitieswill
continue to grow in Sierras Chicas, increasing the number of people and
buildings at risk. Hence, land-use policies should allow novel urban de-
velopments only in areas unsuitable for fires, such as areas with gentle
slopes in drier or humid zones where fuel loads or moisture content
limit fires, respectively. Additionally, urban solid waste should be man-
aged properly, avoiding open sky disposals and applying sanitary mea-
sures in the already existing ones.

Our findings about the climatic conditions favoring fire occurrence
are of great value to estimate future fire activity under different scenar-
ios of climate change. Such estimations will help support proper
decision making as to fire management prevention in space and time.
However, climate change itself is full of uncertainties as to the amount
and directions of change, as well as variability and interactions with
other processes (Bradstock, 2010). For instance, in areas of Sierras
Chicas undergoing increases of annual rainfall (reaching between 650
and 700 mm), fire frequency is expected to increase as well; however,
if the rainy season begins earlier, its effect on fire activity will not be
as expected. Therefore, future fire activity estimations driven by climate
change should be considered with caution.
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