

UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE CIENCIAS EXACTAS F. Y N.

Programa de:

TERMODINÁMICA QUÍMICA

Código:

REPÚBLICA ARGENTINA

Carrera: Ingeniería Química Escuela: Ingeniería Química

Plan: 2004 V05 Carga horario: 108 Puntos: 4.5 Hs. Semanales:

6.75

Departamento: Química Industrial y Cuatrimestre/Año:4º / 2do.

Aplicada **Obligatoria**

Objetivos:

- Comprender la principios fundamentales de la Termodinámica
- Aplicar los conceptos de la Termodinámica a la Química y establecer la interrelación entre sus contenidos y el de las asignaturas que se basan en la misma.

Capacitar a los alumnos en la aplicación de los recursos teóricos-prácticos para abordar la resolución de ejercicios y situaciones problemáticas.

- Tomar conciencia de la importancia y del papel de la energía en las transformaciones en las actuales circunstancias.
- Desarrollar aptitudes para montar, calibrar, etc. instrumentos utilizados en mediciones experimentales.

Programa Sintético (títulos del analítico):

Sistemas Termodinámicos – Gases reales.- Fases condensadas- Primera ley de la termodinámica: aplicaciones. Termoquímica.- Segunda ley de la Termodinámica: aplicaciones. Tercera ley de la Temodinámica. Energías libres. – Relaciones termodinámicas. - Propiedades de las sustancias puras. Cálculo de sus propiedades. Aire húmedo. Ciclos de máquinas térmicas.

Programa analítico de foja 2 a foja: 3

Programa combinado de exámen (si corresponde) de foja: a foja:

Bibliografía de foja: 4 a foja: 4

Correlativas obligatorias: Física II, Química General II y Probabilidad y Estadística.

Correlativas aconsejadas:

Rige:

Aprobado HCD:Res:

Modificado/Anulado/Subst. HCD:Res:

Fecha

El Secretario Académico de la Facultad de Ciencias Exactas, Físicas y Naturales de la U.N.C certifica que el programa está aprobado por el (los) número(s) y fecha(s) que anteceden.

Córdoba. / / .

Carece de validez sin la certificación de la Secretaría Académica.

FACULTAD DE CIENCIAS EXACTAS, FISICAS Y NATURALES

DEPARTAMENTO DE QUÍMICA INDUSTRIAL Y APLICADA

CARRERA INGENIERÍA QUÍMICA

<u>PROGRAMA ANALÍTICO</u> – <u>PLAN 2004</u> <u>Asignatura:</u> TERMODINÁMICA. QUÍMICA

Carga Horaria Total: 120 horas.

Carácter: Obligatoria.

Programa de contenidos teóricos

Carga horaria: 48 horas.

Unidad 1: Termodinámica. Variables de estado. Sistemas termodinámicos. Equilibrio termodinámico. Modificaciones y transformaciones de un sistema. Diagrama de Clapeyron. Proyecciones P-V-T. Ecuaciones de Estado. Equilibrio Térmico. Principio cero. La Temperatura Empírica y su Medición. Termómetros. El Termómetro del gas ideal.

Unidad 2: Gases reales. Ecuaciones de estado. Ecuación de van der Waals. Ecuación de estado reducida. Factor de compresibilidad. Otras ecuaciones de estado: Berthelot, Redlich-Kwong, de virial, etc. Licuación de gases. Datos críticos y ecuaciones de estado. Ley de los estados correspondientes. Mezclas de gases reales y vapores. Reglas de mezclas. Fases condensadas: propiedades. Coeficientes de expansión térmica y de compresibilidad. Ecuación de estado de las fases condensadas.

Unidad 3: Sistemas cerrados. Balance de energía. La conservación de la energía. Energía interna. El Concepto de trabajo. Transformaciones reversibles e irreversibles. El trabajo de expansión. El primer principio de la termodinámica. Aplicación a sistemas cerrados, circulantes y abiertos a régimen no permanente. Sistemas adiabáticos y no adiabáticos. El calor. Capacidades caloríficas molares a presión y volumen constante. Funciones de estado: energía interna y entalpía. Relaciones. Dependencia de la energía interna con la temperatura. Experimento de Joule. Dependencia de la entalpía con la temperatura. Experimento de Joule-Thomson. Relaciones entre Cp y Cv.

Unidad 4: Termoquímica. Calorimetría. Calores de reacción y de formación: determinación experimental. Ecuaciones termoquímicas. Leyes de la termoquímica. Calores de solución, dilución y de formación de la solución. Dependencia del calor de reacción con la temperatura: ecuación de Kirchoff. Energías de enlace y calor de reacción.

Unidad 5: El segundo principio de la termodinámica. Enunciados. Procesos reversibles e irreversibles. Principales causas de irreversibilidad. Máquinas reversibles. El ciclo de Carnot. Escala Termodinámica de la Temperatura. El Teorema de Claussius. La Función Entropía. Procesos reversibles e irreversibles. Teorema de Carnot. Consecuencias. Rendimiento térmico. Teorema de Clausius. Entropía. Diagramas T-S. Aplicaciones a sistemas cerrados, circulantes y abiertos a régimen no permanente. Entropía y equilibrio. Interpretación molecular de la entropía. Tercera ley de la termodinámica.

Unidad 6: Las energías libres de Helmholtz y Gibbs. Relaciones termodinámicas. Cálculo de cambios en sistemas y reacciones químicas. Ecuación de Gibbs-Helmholtz. Criterios de espontaneidad y equilibrio. Energías libres standard de reacción. Propiedades molares

parciales. Métodos de cálculo de propiedades molares parciales. El potencial químico: propiedades, relaciones y cálculo. El Potencial químico de mezclas perfectas y reales. Conceptos de actividad y fugacidad. Fugacidad, su definición y cálculo. La Ecuación de Dühem.

Unidad 7: Relaciones termodinámicas. Formulación matemática de la termodinámica. Vínculo entre el Primer principio y el segundo. Relacion Fundamental. Relaciones de Maxwell. Matemática de las variaciones de las propiedades. Aplicaciones.

Unidad 8: Propiedades de las sustancias puras. Calores de cambio de fases. Superficies termodinámicas. Diagramas P-T, T-V, P-V. Equilibrio de fases. Ecuación de Clapeyron. Integración de la ecuación de Clapeyrón. Cálculo de la presión de vapor, analítico y gráfico. Regla de Trouton. Regla de Ramsay-Young y de Duhring.

Unidad 9: Cálculo de propiedades. Integración de las ecuaciones diferenciales para el cálculo de propiedades. Cálculo de volúmenes, entalpías, entropías en los distintos puntos del diagrama P-T y P-V. Construcción de diagramas termodinámicos. Diagramas termodinámicos generalizados.

Unidad 10: Aire húmedo. Conceptos fundamentales. Humedad absoluta y relativa. Grado de saturación. Temperaturas de bulbo seco, húmedo, saturación adiabática y rocío. Diagramas Psicrómetrico y de Mollier. Construcción. Utilización del diagrama de Mollier a distintas presiones.

Unidad 11: Ciclos de maquinas térmicas. Ciclo de Carnot. Ciclo de maquinas térmicas de vapor. Ciclos frigoríficos de vapor. Ciclos de motores de combustión internas. Máquinas frigoríficas.

Programa de trabajos prácticos

Trabajos experimentales de laboratorio: 40 horas.

- 1. Determinación del Peso Molecular de líquidos volátiles.
- 2. Determinación del coeficiente de dilatación térmica de un líquido.
- 3. Determinación experimental del coeficiente de Joule-Thomson.
- 4. Determinación de la capacidad calorífica molar de una sustancia sólida.
- 5. Determinación calores de disolución, dilución y de reacción.
- 6. Determinación del calor de combustión con una bomba calorimétrica.
- 7. Determinación de volúmenes molares parciales en una solución etanol agua.
- 8. Determinación de la entalpía de vaporización de un líquido.
- 9. Psicrometría: determinación de la humedad relativa ambiente y del aire húmedo por diversos métodos.
- 10. Estudio de los ciclos de máquinas térmicas por simulación en computadora.

Seminarios sobre problemas:

Carga horaria: 32 horas

Sobre cada unidad del programa se realizarán resolución de situaciones problemáticas planteadas por la cátedra en la guía de Trabajos Prácticos.

Bibliografía

Abbot y van Ness. Termodinámica. Mc Graw Hill. 1991.

Balzhiser y M. Samuels. Termodinámica Química para Ingenieros. Prentice Hall. 1974.

Balzhiser y Samuels. Termodinámica Química para Ingenieros. Prentice Hall.1974.

Cengel y Boles. Termodinámica.

Criado-Sancho. Introducción conceptual a la Termodinámica Química. Editorial AC.1983.

Crockford y Novell: Manual de laboratorio de Química Física. Alambra. 1992.

Daniels, Williams, Bender y otros. Fisicoquímica experimental. Mc Graw Hill. 1994.

Gargallo y Radic. Termodinámica Química. Alfaomega. 2000.

Guía de Trabajos Prácticos. Situaciones Problemáticas. Trabajos experimentales de laboratorio.

Elaborada por la cátedra. 2004.

Hougen, Ragatz y Watson. Principios de los procesos químicos. Tomo II. Termodinámica. Reverté.

Kestin, A Course in Thermodynamics. Vol. I y II. Mc Graw-Hill Book Company. 1979.

Levine. Fisicoquímica. Vol. 1. Mc Graw-Hill. 1998.

Modell & Reid. Thermodynamics and Its Applications. Prentice Hall.1983.

Palmer: Química – Física experimental. EUDEBA. 1976.

Shoemaker y Garland: Experimentos en Físicoquímica. Mc Graw Hill. 1990.

Smith y Van Ness. *Introducción a la Termodinámica en Ingeniería Química*". Mc Graw-Hill. 2000.

Van Wylen y Sontag. Fundamentos de la Termodinámica. Limusa. 1977.

Zemansky y Pitman. Calor y Termodinámica. Mc Graw-Hill. 1984.